

BATTERY CELL CHARGE & DISCHARGE TEST SYSTEM MODEL 17011

The Chroma 17011 Battery Cell Charge and Discharge Test System is a high precision system designed specifically for testing lithium-ion battery (LIB) cells, electrical double layer capacitors (EDLC), and lithiumion capacitors (LIC). It is suitable for product development, quality control, and is helpful to characteristic research, cycle life testing, product screening, and quality assessment.

The Chroma 17011 has linear circuit and regenerative AC/DC bi-directional models for different applications. The linear circuit test systems feature extremely low output noise and high measurement accuracy and are applicable for testing small and medium sized energy storage components. The regenerative bi-directional test systems with high efficiency, power saving, low heating, and stable measurement capabilities suit testing medium and large size energy storage components or power type battery cells and fit green energy low carbon emission production.

In addition to the commonly used constant current (CC), constant power (CP), constant voltage (CV), constant resistance (CR), and rest test modes, Chroma 17011 is also equipped with waveform simulation functions and test items including DCIR, HPPC, EDLC capacitance, and EDLC DCR that comply with the international standards, so making program editing and test results analysis much easier.

The Chroma 17011 test system has flexible software editing functions embedded that can create basic charging/discharging or complex cycle tests for each channel to run independently. The program can edit logic decisions to jump or output variables, and pause or resume. It also has data protection functions to securely store the data in a nonvolatile memory in case of a power outage or disconnected communication, as to prevent potential data loss and resume the tests after reboot.

Since safety is crucial for testing lithium-ion battery cells, the design of Chroma 17011 offers a variety of safety protections. Before starting, a contact check and polarity check avoid testing under poor connection. During testing, besides the preloaded hardware circuit protection, the user can customize the firmware to detect overvoltage (OVP), overcurrent (OCP), overcapacity (OQP), voltage / current variation ($\Delta V / \Delta I$), loop resistance and other anomalies to safeguard the lithium-ion battery cells.

MODEL 17011

KEY FEATURES

- High precision output and measurement up to 0.015% of full scale
- Fast current response up to <100 μS
- High sampling rate up to 10 mS
- Flexible sampling recording $(\triangle t, \triangle V, \triangle I, \triangle Q, \triangle E)$
- Channel parallel output function with maximum 1200A output
- High efficiency charge and discharge with low heating
- Energy recycling during discharge (AC/DC bi-directional regenerative series)
- Waveform simulation function (current/power mode)
- Built-in DCIR test function
- Built-in EDLC capacitance and DCR test function
- Operating modes: CC / CP / CV / CR / CC-CV / CP-CV / Rest / SD test
- Multi-level safety protection mechanism
- Integrable data logger and chamber

APPLICATIONS

- Electric vehicle
- Electric scooter/bike
- Energy storage system
- Power tools
- Quality inspection agency
- Academic research

Chroma

LINEAR CIRCUIT TEST SERIES

Model 17216M-10-6

0~6V

0~6V

0~6V

Model

17216M-10-6 *1

17216M-6-12

17208M-6-30

17208M-6-60 *2

Model 17216M-6-12

200µA / 6mA / 200mA / 6A

1mA / 100mA / 10A / 30A

500mA / 5A / 15A / 60A

100mA / 1A / 3A / 12A

Current Ranges

		6 3(V)A			
		8 - 1 8		{ 		¥.
Ļ	 ode	17	2081	.	30	ŀ

Channels

16~64

16~64

8~32

8~32

*1: 17216M-10-6 has three built-in voltage output modes that can be switched through the software settings.

*2: 17208M-6-60 has to be paired with an external power supply and placed into a rack; other models contain an integrated power module and can be used either stand-alone or in a rack.

High precision – improving product guality

Voltage Ranges

 \pm 5V / 0~5V / 0~10V

Voltage / current measurement accuracy: $\pm 0.015\%$ of F.S. / $\pm 0.02\%$ of F.S.

- Wide range of voltage output: Equipped with a 0V to 6V output range, and specific models allow to switch between three built-in voltage output modes. Voltage measurements distinguished up to 0.1mV.
- Multiple range measurement design: Providing various current or voltage ranges (depending on the model) to greatly improve measurement accuracy and resolution. The current range switches automatically and at the constant voltage mode there is no current output interruption.

Multi-Voltage Range (17216M-10-6)

Fast current response – suitable for a variety of high-speed transient test applications

Current response time (10% to 90%) < 100 μS *1

Support dynamic waveform to simulate the rapid changing current and power states

*1: The current response time <100 μ S applies to model 17216M-10-6, the impedance of other UUTs will slightly differ.

Multi-Current Range

Rise Time<100 µS (17216M-10-6)

Dynamic waveform simulation

- Current and power dynamic charge/discharge waveform, simulate the actual battery usage of car driving or other real life applications
- Import the current and power waveforms from Excel file
- Save 1,440,000 points in each channel for long hour dynamic testing
- Minimalize time interval for data output: 10 mS

Dynamic waveform simulation

Loading waveform current

Rise Time<250 µS (17208M-6-30)

Model	Voltage Ranges	Current Ranges	Channels
17212R-5-60	Charge 0~5V ; Discharge 1.5V~5V	60A	12~48
17212R-5-100	Charge 0~5V ; Discharge 1.5V~5V	100A	12~36
17212M-6-100	Charge 0~6V ; Discharge 1.5V~6V	25A / 50A / 100A	12~36

* A fitting AC/DC bi-directional converter is chosen according to the power input and placed into a rack.

Energy recycling – optimal utilization of electricity

- Direct recycling: Automatically transfer the discharging energy to the battery cells to be charged with recycling efficiency >80%
- Grid recycling: Recycle the excessive energy to the grid with recycling efficiency >60%
- Low carbon emissions for green energy, preventing waste heat from generating during discharge
- Saving electricity costs with high efficiency power charge and discharge
- Saving air conditioning costs on cooling equipment
- Current harmonic distortion <5% for feedback to grid current
- Power factor >0.98 at rated power

High precision

- Voltage accuracy: \pm (0.02% of Reading + 0.02% of F.S.)
- Current accuracy: $\pm 0.05\%$ of F.S.

Fast current response - waveform mode

- Current response speed (-90%~90%) < 1mS applicable for all kinds of tests
- Support dynamic waveform to simulate the current and power state of actual car driving with NEDC, FUDS and DST test standards

Rise time < 1 mS (17212M-6-100)

FUNCTIONS

High frequency sampling measurement technology – improving measurement accuracy

V / I sampling rate: 50 KHz (Δt : 20 μ S)

Generally, battery testers use software to read current values for calculating power; however, limited data sampling rates could result in large errors when calculating the dynamic current capacity. By increasing the sampling rate and using a double integration method, Chroma 17011 is able to provide a capacity calculation with much higher accuracy. When the current changes, the data is not lost and the transmission speed is not affected.

General charger/discharger sampling rate

Chroma charge & discharge tester sampling rate

Flexible paralleling channels for output

The test systems allow flexible setting for paralleling channels in order to provide higher current application for multi-channels and broad testing ranges, making the Chroma17011 suitable for various UUTs.

- Easy to parallel the tester channels via software which supports full range of products
- Suitable for high ratio charge and discharge test or diversified battery test applications

Flexible paralleling channels control

Data protection and recovery

Power loss data restoring mechanism: After a power loss, the PC will automatically recover the data status of the testing data that already was written into the database. The user can choose to resume or restart testing.

HPPC test application

HPPC is a test procedure developed by the USABC (U.S. Advanced Battery Consortium) for the battery power performance of hybrid and electric vehicles. Within the batteries operation voltage range, the procedure mainly establishes the function of the relationship between the depth of discharge and power and, secondarily, establishes the depth of discharge, conductive resistance and polarization resistance function via the voltage and current response curve from discharging, standing to charging. The measured resistance can be used to assess the battery's power recession during later life tests and its equivalent circuit model development. Chroma 17011 has a flexible editing program that allows HPPC testing.

BATTERY DCIR TEST APPLICATION

Battery DCIR test application

The internal resistance value is related to the charge/discharge ratio of a battery. The larger the internal resistance value, the lower the efficiency when temperature rises. According to the lithium-ion battery equivalent circuit model, the ACIR measurement of traditional 1KHz LCR meters can only evaluate the conductive resistance (Ro) of the battery that affects the instantaneous power output, but is unable to evaluate the polarization resistance (Rp) produced during electrochemical reaction. The DCIR evaluation includes the ACIR that is closer to the actual polarization effect of battery under continuous power applications.

The Chroma 17011 includes two types of DCIR test modes: DCIR test (1) calculates the DCIR value using the voltage difference caused by the change of onestep current, DCIR test (2) calculates the DCIR value using the voltage difference caused by the change of two-step current. Users can select the desired test mode and automatically, without any manual calculation, get the results that comply with IEC 61960 standards.

Lumped parameter model circuit diagram

The capacity can be obtained as the integral of the current integrating the current versus time from the start of charging/ discharging until the cut-off condition is reached. The comparison results are useful to analyze performance differences between products, and the common test items include current ratio and temperature characteristics tests. Higher accuracy of current, voltage measurement and faster sampling enable to distinguish more accurately the differences in battery cell capacity.

Coulombic efficiency test application

Coulombic efficiency (CE) is calculated by the charge/discharge capacity ratio when the battery is fully charged and then fully discharged. Good batteries have higher coulombic efficiency, and need high precision and stable equipment to distinguish differences. An accurate coulombic efficiency test can estimate the battery lifespan with only a few cycles.

Coulombic efficiency test

Battery cycle life test application

Cycle life is one of the most important test items for batteries. In accordance with the experimental purpose, it tests the same battery through repeated charge and discharge conditions until the capacity falls to 80%, and calculates the cycle numbers. The cycle life test can be used to evaluate the battery performance or define the applicable conditions of use.

Incremental capacity analysis application

The high precision voltage measurement and ΔV sampling function can draw dQ/dV versus voltage curve diagrams to analyze battery cell characteristics and capacity degradation.

dQ/dV vs voltage

EDLC TEST APPLICATIONS

The equivalent circuit model development of the classical EDLC includes an equivalent series resistance (ESR), a capacitance (C), and an equivalent parallel resistance (EPR). The ESR is used to evaluate the internal loss and heat of the EDLC during charging/ discharging; the EPR to evaluate the leakage effect in the EDLC's long-term storage; the C to evaluate the EDLC cycle life.

These parameters are not easily directly measured in a laboratory; researchers need data analysis and complex calculations to determine these important indicators. Chroma 17011 is equipped with the IEC 62391 testing standards and the user can use charge/ discharge tests to obtain the EDLC parameters values, in order to evaluate the EDLC characteristics and cycle life.

EDLC equivalent circuit model development

EDLC direct current resistance (DCR) and equivalent series resistance (ESR) test application

Chroma 17011 offers EDLC direct current resistance testing function compliant with test standard IEC 62391. Before testing, the EDLC has to be CC-CV charged. The capacity test is to discharge CC via the above discharge current. When the discharge is completed, get the linear section on the discharge curve and extend it to discharge time and then get the voltage difference of rated voltage and discharge current to calculate the DCR value.

Voltage Characteristic Between EDLC Terminals

EDLC capacitance (C) test application

In accordance with the Straight Line Approximation Method of the IEC 62391 testing standard, before measuring the capacitance (C) value, the EDLC first needs to be fully charged through a CC-CV charging mode. The capacity test is to discharge CC via the above discharge current. Then, the electric potential difference (Δ V) of two reference points on the discharge curve are taken against the time difference (Δ t) and the discharge current (I) to calculate the capacitance value of the EDLC.

EDLC combined DCR and C test application

Chroma 17011 also has a direct current resistance (DCR) and capacitance (C) combined test application. Under the same CC-CV charged and CC discharged conditions, the user can use the electric potential in the chosen reference points to simultaneously calculate the DCR and C values of the EDLC to save testing time.

Voltage Characteristic Between EDLC Terminals

Voltage Characteristic Between EDLC Terminals

EDLC TEST APPLICATION

Charge/discharge performance and cycle life test application

The built-in direct current resistance (DCR) and capacitance (C) test modes can be combined with cycle function and variable set testing conditions to test the EDLC load endurance and reliability. After testing, the user can directly export DCR vs Cycle No. and Capacity vs Cycle No. reports to analyze the EDLC failure and deterioration mechanisms.

Charge-Discharge Cycle Testing

Coulombic efficiency test application

Chroma 17011 is equipped with low noise, automatically switching current range, and cut-off report as to quickly output accurate current charge/discharge. The coulombic efficiency (CE) is calculated by the charge/discharge capacity ratio, which indicates the EDLC internal capacity conversion as available capacity. A highly accurate CE is an important marker to distinguish differences between products.

EDLC leakage current measurements generally need to CC-CV charging until a specific time and then it measures this tiny

charging current, which is seen as leakage current. The Chroma

17011 CC-CV mode can automatically change current range without output interruption. Under stable voltage, the current

Coulombic efficiency test

Current (A) Range 4 Range 3 Range 2 Range 1 Leakage Current Time (S)

Automatically change current range in CC-CV mode

Self-discharge test application

range can be as small as 200μ A.

Leakage current test application

Chroma 17011 also has a built-in self-discharge test mode, when the EDLC is fully charged it can test the charge/discharge for a set time period. When this mode starts, the system will cut off the measuring circuit to provide the ideal open circuit and solely measure the starting potential (V1) and cut-off potential (V2). The software can automatically calculate the electric potential difference (ΔV).

Self-discharge test mode

GRAPHICAL SOFTWARE OPERATING INTERFACE

The Chroma 17011 test systems are controlled by computer software with diverse functions for testing energy storage products. The safe, stable and friendly operation interface allows users to perform setting and testing rapidly.

- Support English, Traditional Chinese, and Simplified Chinese languages interfaces
- Real time multi-channel DUT status monitoring
- Security management: set user authority for safe management

Failure record tracking: independently record abnormalities for each channel, the charge and discharge protection will abort the test when an abnormal condition is detected

Battery Pro main panel

Real time monitoring

Waveform current editor

Recipe editing

- 500 steps per recipe
- Double loop (Cycle & Loop) with 999,999 repeat counts per loop
- Sub-recipe function: Call existing recipes
- Test steps : CC / CV / CP / CC-CV / CP-CV / CR / Rest / Waveform / DCIR / C / DCR, etc.
- Cut-off conditions : Time / Current / Capacity / Power / Variable, etc.
- Logical operations : Next / End / Jump / If-Then

Recipe executing

- Operating modes: Start / Stop / Pause / Resume / Jump / Reserve Pause / Modify during test
- Display interfaces: Graphic display / Table display
- Instant monitoring window

Statistics report

- Able to define report formats and export them as PDF, CSV, and XLS files
- Graphical report analysis functions allow custom reports such as cycle life reports, Q-V reports, V / I / T time reports, etc.

SYSTEM INTEGRATION

- Integrate with an environmental chamber through software to synchronize the settings conditions for charge/discharge testing
- Integrate with a multifunctional data logger through software to read and set multiple temperature records during the charge/discharge process. Change these conditions to protection or cut-off conditions

EXTERNAL STRUCTURE

Linear circuit models

The tester can be used stand-alone to take up little space, which fits a handful of tests performed on the desktop. When the tester is configured with more test channels, it can be integrated into a standard 19-inch rack for use. The system can be configured as demanded by the user as the channel numbers are expandable, and up to 64 channels can be controlled by one PC at the same time.

Model	Dimensions (D x W x H) mm	High
17216M-10-6	697 x 428 x 221	5U
17216M-6-12	697 x 428 x 221	5U
17208M-6-30	733 x 428 x 221	5U

Chassis Size	6A/12A	30A	60A	Dimensions (D x W x H) mm
25U	32 CH *	16 CH *	16 CH	1100 x 600 x 1340
36U	64 CH *	32 CH *	32 CH	1100 x 600 x 1830
41U			32 CH *	1100 x 600 x 2060

* Available space for data logger

Regenerative models

A charge/discharge tester and an AC/DC bi-direction converter can be integrated into a standard 19-inch rack for use. The system can be configured as demanded by the user as the channel numbers are expandable, and up to 48 channels can be controlled by one PC at the same time.

Chassis Size	60A	100A	Dimensions (D x W x H) mm
25U	24 CH *	12 CH *	1100 x 600 x 1340
36U	48 CH	36 CH	1100 x 600 x 1830
41U	48 CH *	36 CH *	1100 x 600 x 2060

* Available space for data logger

60A / 41U system

100A / 41U system

Туре	Power	8 CH	12 CH	16 CH	24 CH	32 CH	36 CH	40 CH	48 CH	64 CH	Regenerative
6A	1			3 kVA		5 kVA			8 kVA	10 kVA	
12A	1			3 kVA		6 kVA			9 kVA	12 kVA	
30A	1	4.5 kVA		9 kVA	13 kVA	17 kVA		22 kVA			
40.4	1	9 kVA		18 kVA	26 kVA	34 kVA		43 kVA			
OUA	3 ⁽¹⁾ 220V/3 ⁽¹⁾ 380V		9 kVA		18 kVA		26 kVA		35 kVA		Yes
100A	3 ⁽¹⁾ 220V/3 ⁽¹⁾ 380V		15 kVA		29 kVA		43 kVA				Yes

Chroma 17011 system power consumption

ORDERING INFORMATION

17011 : Battery Cell Charge & Discharge Test System
17216M-10-6 : Programmable Charge/Discharge Tester, 10V / 6A, 16CH
17216M-6-12 : Programmable Charge/Discharge Tester, 6V / 12A, 16CH
17208M-6-30 : Programmable Charge/Discharge Tester, 6V / 30A, 8CH
17208M-6-60 : Programmable Charge/Discharge Tester, 6V / 60A, 8CH
17212R-5-60 : Programmable Charge/Discharge Tester, 5V / 60A, 12CH
17212R-5-100 : Programmable Charge/Discharge Tester, 5V / 100A, 12CH
17212M-6-100 : Programmable Charge/Discharge Tester, 6V / 100A, 12CH
A691103 : DC/AC Bi-direction Converter, AC 220V to DC 45V
A691104 : DC/AC Bi-direction Converter, AC 380V to DC 45V

SPECIFICATIO	NS-1						
Model		17216	M-10-6	17216M-6-12			
Maximum Voltage/	'Current	10V	/6A	6V/12A			
Maximum Channel		16 Ch. / s	set (fixed)	16 Ch. / set (fixed)			
Parallelable Curren	ıt	6A to	96A	12A to	o 192A		
Voltage							
Range		0V~10V, 0V~	5V or -5V~5V	0mV~6	0mV~6000mV		
Accuracy		±0.0159	% of F.S.	±0.015	% of F.S.		
Setting		1n	nV	1r	nV		
Resolution	Reading	0.1	mV	0.1	mV		
Current							
		200µA	0.1µA ~ 200µA	100mA	0.1mA ~ 100mA		
Dener		6mA	1µA ~ 6mA	1A	1mA ~ 1A		
Range		200mA	0.1mA ~ 200mA	3A	1mA ~ 3A		
		6A	1mA ~ 6A	12A	10mA ~ 12A		
Accuracy		± 0.02%	of Range	± 0.02%	of Range		
	Setting	0.1µA/1µA/	0.1mA/1mA	0.1mA/1mA	/1mA/10mA		
Resolution	Reading	0.01µA/0.2µA/	0.01mA/0.2mA	0.01mA/0.1m	A/0.1mA/1mA		
Power							
		2mW	1µW∼2mW	600mW	0.1mW~600mW		
		60mW	10µW~60mW	6W	1mW~6W		
Setting Range		2W	1mW~2W	18W	10mW~18W		
		60W	10mW~60W	72W	10mW~72W		
Accuracy		+ 0.035%	of Range	± 0.035%	of Range		
riccuracy	Setting	1uW/10uW/	1mW/10mW	0.1mW/1mW/10mW/10mW			
Resolution	Reading	0 1uW/2uW/	0.1mW/2mW	10uW/0.1mW/1mW			
Data Record	reading	0.10172017	10	mS			
Current Rise Time	(+10% ~ +90%)	100)uS	250	ວິມຣ		
Current hise hine i	(11070 17070)	100	μ υ	20	545		
Model		17208	M-6-30	17208	M-6-60		
Maximum Voltage/	Current	6V/	30A	6V/	60A		
Maximum Channel		8 Ch / s	et (fixed)	8 Ch /s	et (fixed)		
Parallelable Curren	1†	30A to	240A	60A to	480A		
Voltage		00///0	21071	00711	, 100/1		
Range		0mV~6	.000mV	0mV~6	000mV		
Accuracy		+0.0159	% of FS	±0.015% of F.S.			
Accuracy	Setting		nV	1mV			
Resolution	Reading	0.1	mV	0.1	mV		
Current	Redding	0.1		0.1			
Guildin		1mA	1μΔ ~ 1mΔ	500mA	$0.1 \text{mA} \sim 500 \text{mA}$		
		100mA	$0.1 \text{mA} \sim 100 \text{mA}$	54	1mA ~ 54		
Range		104	10mA ~ 10A	154	10mA ~ 15A		
		30 \	10mA ~ 30A	604	10mA ~ 60A		
Accuracy		+ 0.02%	of Pango	10MA ~ 60A			
Accuracy	Sotting	1.1 Å /0.1 m Å /		-10.02% of Range			
Resolution	Reading	 0.1μΔ/0.1mA/	0.01A/0.01A	0.1mA/1mA/10mA/10mA			
Reading		0. τμΑ/ 0.0 τιπ		0.01mA/0.1mA/1mA/1mA			
1 Ower		6m\\/	6u\M~6m\M	3/\/	$1mM_{\sim}3M$		
		600~\//	0.6m\\/a.600m\\/	30\//	10m\//~30\/		
Setting Range		40\\/	60m\A/_60\A/	00\//	10mW~30W		
		190\\/	0.19\A/_190\A/	24014/	100~14/ 24014/		
•			0.1000~18000	30UVV	of Donge		
Accuracy	Cotting	± 0.035%		± 0.035%			
Resolution	Booding	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0.0100/0.0100				
Data Darra	Reading	0.1µvv/0.01m	vv/1mvv/1mvv	0.1mVV/1mVV	/ Imvv/ IUmvv		
Data Record	(+109/ +009/)	050	10	m5	0C		
Current Rise Time (+10% ~ +90%)		250	μ	250µS			

* All specifications are subject to change without notice.

SPECIFICATIO	NS-2				
Model		1721	2R-5-60	17212R-5-100	
Energy Recycling		Y	les	Yes	
Maximum Voltage	/Current	5V.	/60A	5V/100A	
Maximum Channel		12 Ch. /	set (fixed)	12 Ch. / set (fixed)	
Parallelable Currer	nt	60A t	o 720A	100A to 1200A	
Voltage					
Range		0mV ~	5000 mV	0mV ~ 5000 mV	
Accuracy		± (0.02% rdg	.+0.02% of FSR)	\pm (0.02% rdg.+0.02% of FSR)	
Resolution	Setting	1	mV	1mV	
	Reading	0.	1mV	0.1mV	
Current *1		1			
Range		50mA	A ~ 60A	50mA ~ 100A	
Accuracy	1	± (0.05% rdg	.+0.05% of FSR)	± (0.05% rdg.+0.05% of FSR)	
Resolution	Setting	10)mA	10mA	
	Reading	1	mA	1mA	
Power					
Setting Range		0.05W	~ 300W	0.05W ~ 500W	
Accuracy		± (0.07% rdg	.+0.07% of FSR)	± (0.07% rdg.+0.07% of FSR)	
Resolution	Setting	0.1%	of FSR	0.1% of FSR	
	Reading	0.01%	5 of FSR	0.01% of FSR	
Data Record		10		ims	
Current Rise Time	(+10% ~ +90%)	25	ōmS	25mS	
Model		17212M-6-100			
Energy Recycling		١	les		
Maximum Voltage	/Current	6V/	100A		
Maximum Channel		12 Ch. /	set (fixed)		
Parallelable Currer	nt	100A to 1200A			
Voltage		<u> </u>			
Range		$-0000 \text{ mV} \sim 6000 \text{ mV}$ + (0.02% rdg +0.02% of ESP)			
Accuracy	Sotting	\pm (0.02% rdg.+0.02% of FSR)			
Resolution	Reading	0	1mV		
Current *1	Reading	0.			
		25A	2mA ~ 25A		
Range		50A	5mA ~ 50A		
		100A	10mA ~ 100A		
Accuracy		± 0.05	6% of F.S.		
Resolution	Setting	1mA/5r	nA/10mA		
Reading		0.1mA/0	.5mA/1mA		
Power		45014/	40 14/ 45014/		
Setting Range		2001/	10mvv~150vv 20m\V/~200\V/		
		300VV 30mVV~300W			
Accuracy		+ 0.09	% of E.S.		
	Setting	10	mW		
Resolution Reading		1mW			
	Data Record				
Data Record	Redding	10	DmS		

Note*1: The maximum discharge current will derate at low voltage range between 1V to 0V.

* All specifications are subject to change without notice.

Get more product & distributor information in Chroma ATE APP

Search Keyword

17011

SOUTHEAST ASIA (A company of Chroma Group) 46 Lorong 17 Geylang # 05-02 Enterprise Industrial Building, Singapore 388568 T +65-6745-3200 F +65-6745-9764 www.quantel-global.com sales@quantel-global.com

HEADQUARTERS CHROMA ATE INC. 66 Huaya 1st Road, Guishan, Taoyuan 33383, Taiwan T +886-3-327-9999 F +886-3-327-8898 www.chromaate.com

U.S.A. CHROMA ATE INC. (U.S.A.) 7 Chrysler, Irvine, CA 92618 T+1-949-421-0355 F+1-949-421-0353 www.chromaus.com info@chromaate.com info@chromaus.com

> CHROMA SYSTEMS SOLUTIONS, INC. 19772 Pauling, Foothill Ranch, CA 92610 T +1-949-600-6400 F +1-949-600-6401 www.chromausa.com sales@chromausa.com

EUROPE CHROMA ATE EUROPE B.V. Morsestraat 32, 6716 AH Ede, The Netherlands T+31-318-648282 F +31-318-648288 www.chromaeu.com sales@chromaeu.com

CHROMA GERMANY GMBH info@chroma.co.jp Südtiroler Str. 9, 86165, Augsburg, Germany T +49-821-790967-0 F +49-821-790967-600 www.chromaeu.com sales@chromaeu.com

JAPAN CHROMA JAPAN CORP. 888 Nippa-cho, Kouhoku-ku, Yokohama-shi, Kanagawa, 223-0057 Japan T +81-45-542-1118 F +81-45-542-1080 www.chroma.co.jp

KOREA CHROMA ATE KOREA BRANCH 3F Richtogether Center, 14, Pangyoyeok-ro 192, Bundang-gu, Seongnam-si, Gyeonggi-do 13524, Korea T +82-31-781-1025 F +82-31-8017-6614 www.chromaate.co.kr info@chromaate.com

CHINA CHROMA ELECTRONICS QUANTEL PTE LTD. (SHENZHEN) CO., LTD. 8F, No.4, Nanyou Tian An Industrial Estate, Shenzhen, China T +86-755-2664-4598 F +86-755-2641-9620 www.chroma.com.cn info@chromaate.com